
C++
 PROGRAMMING

C++ Notes

OOPs (Object Oriented Programming)

POP (Procedure Oriented Programming)

Following control structures can be used in each procedure to control instructions.

1.
2.

 To skip running a set of instructions.
 To run a set of instructions more than one times.

COBOL, FORTRAN and C are such programming language which commonly
called POP based languages.
Basic approach / concept of POP:

Everything is considered in the form of object and they are identified on the basis of
their properties. Objects of any class can be communicated to each other called
message passing in OOPs.

OOPs is a new approach to design a real world program and secure global
data. C++, Java and C# are OOPs based languages.
Basic approach / concept of OOPs:

1. A procedure can also use global data that does not need and affect result of
program.

2.For real world application, POP becomes fail. Because large scale program
cannot be developed properly.

In this approach for any requirement, sequence of reading, calculating and printing
instructions are grouped in a unit called procedure (function or sub routine or method).
For each requirement, a new procedure is created. In this way, a single program is
oriented by a number of procedures. Such approach for designing program is called POP
(Procedure Oriented Programming) and programming language that follow this
approach called POP language like C.

In POP, Data can be used in two ways.
1. Global Data: Sharable for all the procedures that declared outside of all

procedures.
2. Local Data: Accessible to that procedure where it is declared. For other

procedure local data are unknown.

Conditional Structure:
Looping Structure:

Drawbacks of POP:

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

3.

2. Data abstraction:

Characteristics of OOPs:

1. Data encapsulation:

2.
Object: One Instance of the class is called object. Or variable of the class is called
object.

1
.
2
.
3
.
4
.
5
.

Class
Objects
Data encapsulation
Data abstractions
Inheritance
6.Polymorphism
7.Dynamic binding
8.Message passing
Any programming language that support all above properties called OOPs based
language like C++, Java and C#.
1. Class: Description of any object on the basis of data and functions called class. Or

User defined data type of object called class.

When all data of any object, are defined in a single unit
called data encapsulation. It is done using making class. Ex: id, length,
breadth, color and price are defined in a single unit for all objects (duster1,
duster2).

When it is possible to know about any object using a
shorter name called data abstraction. It is done by defining the class name. Ex:
Duster is a name of class that defines about duster1 and duster2.
Inheritance: When a new class (derived class) is enabled to access properties
of old class (base class) called inheritance.

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 4

 Now a days OOP is much popular because we can use their concept to solve in
any type of problems some of them are much like:

1.Real time system
2.Simulation and modeling
3. Object oriented database
4.Hypertext and hypermedia
5.AI and expert system
6.Decision support and office automation
7.CAM /CAD System

In this example stationary is a common class for Duster and Marker class.
Both classes do not to redefine id, color and price data types. They are
linked using inheritance.

If two or more functions having same name then it is called
polymorphism.

When it is possible to link a function to its function call at
run time then it is called dynamic binding.

Objects of any class can pass data to each other called
message passing.

Private data of the class can’t be accessed from outside.
Data of the class can be accessed as a private, protected and
public. Private for same class, protected for derived too and public for
anywhere.

Reusability:
class.

Using inheritance, members of old class can be used into new

Large size of real world application can be easily
developed.
Easy to debug: All classes can be debugged separately.

4. Polymorphism:

5.Dynamic binding:

6.Message passing:

Advantages of OOPs:
1.Data Hiding:
2. Security of data:

3.

4.Easy development:

5.
Uses / Application of OOPs:

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 5

Introduction of C++:

Compiling and running C++ program:

Input (cin) & Output(cout) statement in C++:
In c++, iostream.h header file is used to support all input output streams classes in our
program.
Output statement: using “cout<<” stream object we can display data on monitor.
(just like printf in c)
Input statement: using “cin >>” stream object we can assign keyboard value to the
variable of the program.(just like scanf in c)
Example: u1p1.cpp

-
-

-

-
-

1.Install Turbo C++ software in DOS based operating system.
2.Open TC.exe file from location c:\TC3 or TC\BIN\TC.exe.
3.Type C++ program and save.
4.Compile using Alt+F9.
5.If program is error free then run using Ctrl+F9.
6. Check output screen using Alt+F5.

If number of data are more than each data must be separated by << or >>.
cout << "a =" << a << "\n";

This statement reads two values from keyboard and store to first in variable a then to
variable b.

C++ is an object-oriented programming language. It was developed by Bjarne
Stroustrup at AT&T Bell Laboratories in Murray
Hill, New Jersey, USA, in the early 1980’s.
C++ is an extension of C therefore initially it was called ‘C with classes’.
In1983, the name was changed to C++ due to idea comes from the C
increment operator ++.
C+ + is a superset of C. Almost all c programs are also C++ programs.
C++ a truly object-oriented language because it provides the facilities of
making class, objects, inheritance and polymorphism.

cin>>a>>b;

#include<iostream.h>
void main()
{

int a;
cout<<"\n Input Integer:";
cin>>a;
cout<<"\nInteger value is "<<a;

}
Output:
Input Integer: 11
Integer value is 11

will display on monitor as- a=11

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 6

POP (Procedure Oriented Programming) C++ Program:

Program: u1p2.cpp
// Documentation

/*
Program to demonstrate POP organization and Top to
Down approach, Created by: www.LRsir.net
*/

//include files
#include<iostream.h>

//Global declaration
int a,b;
void getdata(int,int);
void showdata();
int sum();
//Main function

void main()
{

getdata(10,20);
showdata();
int c=sum();
cout<<"\nSum="<<c;

}
//User defined functions

void getdata(int p1,int p2)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\n"<<a<<"\t"<<b;
}
int sum()
{

return a+b;
}

Output:
a=10
Sum=30

b=20

multiline comment
//….. is single line comment
Variables can be declared anywhere before use in C++.
In C++, program can be designed in POP or OOPs style.

Remark:
/*……*/ is

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 7

OOPs Structure of C++ Program: (Bottom-up Approach)
The structure of C++ program can have four sections.

1.

2.

3.

4. Member function definition: In this section, all explicit member functions of the
class are defined outside the class using scope resolution operator (::).
Ex:
void A::getdata(int p1,int p2)
{

Include file section: In this section all needful files are included in the program
that contains declaration of class and functions used in the program.
Ex: #include<iostream.h>

Contain declaration of cout and cin stream object.
Class declaration section: In this section we create classes. Every class contains
data and function declaration. In class we can also define member functions.
Ex:

class A
{

Documentation: In this section we write comment about program that ignore by
compiler. In comments we can write program name, uses, developer name, date,
any help etc. Comments are written in /*--------*/(multiline comment) and //------
(single line comment).
// Documentation /* Program to demonstrate POP
organization and Top to
Down approach, Created by: www.LRsir.net */

int a,b;
public:

void getdata(int);
void showdata();
int sum();

};

a=p1;
b=p2;

}
void A::showdata()
{

cout<<"\n"<<a<<"\t"<<b;
}

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 8

int A::sum()
{

return a+b;
}
Main function section: In this section we can declare object of class and call
public member functions of the class.
Ex:
void main()
{

A ob;
ob.getdata(10);
ob.showdata();
int c=ob.sum();
cout<<"\nSum="<<c;

}

Program:u1p3.cpp
// Documentation

/* Program to demonstrate OOPs organization and
Bottom-Up approach, Created by: www.LRsir.net
*/

//include files
#include<iostream.h>

//class declaration
class A
{

int a,b;
public:

void getdata(int);
void showdata();
int sum();

};
//Member function definition

void A::getdata(int p1,int p2)
{

a=p1;
b=p2;

}
void A::showdata()
{

cout<<"\n"<<a<<"\t"<<b;
}
int A::sum()
{

return a+b;
}

5.

In this way a OOPs C++ program is designed in four sections.
OOPs(Object Oriented Programmings) C++ Program:
On the basis of above structure, an OOP’s C++ will design in following order.

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 9

Program:u1p4.cpp
struct A
{

int a;
int b;

};
void main()
{

A oa; oa.a=10;
oa.b=20;
out<<oa.a<<"\n"

 cout<<oa.b;
}
Output:
10
20

//Main function
void main()
{

A ob;
ob.getdata(10);
ob.showdata();
int c=ob.sum();
cout<<"\nSum="<<c;

}
Output:
a=10
Sum=30

b=20

Program:u1p6.cpp
Program:u1p5.cpp
union A
{

class A
{

int a; int b; public:
void get(int p1,int p2)
{

int a;
int b;

};
void main()
{ a=p1;

b=p2; A oa;
oa.a=10;
oa.b=20;
cout<<oa.a<<"\n"
cout<<oa.b;

}
void show()
{

cout<<oa.a<<"\n"
cout<<oa.b; }

Output:
20 20

}
};
void main()
{

A oa;
oa.get(10,20);
oa.show();

}
Output:
10
20

Structure body supports
only data members.
All data members are
created when variable
of structure is created.

Union body supports only
data members.
Only one largest size of
data member is created
when variable of union is
created.
By default, union
members are public.
union keyword is used to
define union.
Ex:

By default, structure
members are public.
struct keyword is used
to define structure.
Ex:

By default, class members are
private.
class keyword is used to define
class.
Ex:

Class body supports data members
as well as member functions.
All data members are created when
variable of class(object) is created.

Structure vs Union vs Class
Structure Union Class

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 10

Inline function:

Scope Resolution operator (::)
If a function that uses same name of global variable and local variable then by local
variable will be accessed. But if we want to use global variable then use scope
resolution operator (::) with variable name.

In this example addition() is an inline function whereas show() is not.

A function that contain only one or two line of code and define using
keyword called inline function.
Syntax:

Example:

In this program, name of local and global variable having the same name (n) therefore
inside any function n will be consider as local variable and ::n will be consider as global
variable.

inline fun_name(type arg1, type arg2,…)
{

One/two line of code
}

Example: Program:u1p8.cpp
#include<iostream.h>
inline int addition(int a, int b)
{

return a+b;
}
void show(int n)
{

cout<<n;
}
void main()
{

int x;
x= addition(10,20);
show(x);

}
Output:

30

Program:u1p7.cpp
#include<iostream.h>
int n=10;
void main()
{

//global variable

int n=20; //local variable
cout<<"\n Access local variable:"<< n;
cout<<"\n Access global variable:"<< ::n;

}
Output:

Access local variable: 10
Access global variable: 20

inline

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 11

Class declaration:
A description of any object is called class. Data members and functions of the object
can be defined inside the class body.
Syntax of the class:

Data members of the class can be accessed only by member functions of the same
class.
Member functions will be called by objects as per needs.
Ex:
class Duster
{

Benefit of inline function:
At compile time, function calling statement is replaced by codes of inline function
that save time consuming to jump on that function at run time. If inline function has
loop or a number of statement then inline function behave normal function. Member
functions that define inside the class and having only one or two line of code also
called inline function.
What is class and object? How class is defined using data member
and function? How object access members of the class?

};

}

class cls_name
{

Data Member’s Declaration
public:

Member Function’s Definitions
};

int id;
int length;
int breadth;
char color[10];
float price;

public:
void getdata()
{

cout<<"\nInput id,length,breadth of duster:”;
cin>>id>>length>>breadth;
cout<<”Input color and price of duster:";
cin>>color>>price;

}
void showdata()
{

cout<<"\nDuster record is:";
cout<<"\nId="<<id;
cout<<"\nlength="<<length;
cout<<"\nbreadth="<<breadth;
cout<<"\ncolor="<<color;
cout<<"\nprice="<<price;

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 12

Object of the class can access public members using .(dot) called period or
membership operator.
Syntax:

Example:

Instances of class or variable of class data type is called object. When object is created
then data members of the class is created.
Syntax:

Example:

In this example id, length, breadth, color and price are data members and used by
getdata() and showdata() member functions. They are related to any Duster objects so
suitable name of the class is Duster.
Object declaration:

When more than objects are declared then separate data members are created for each
object.
Accessing members of the class:

If duster1 call getdata() and showdata() member function then, these function access
data of object duster1, similarly if duster2 object call these member function then
they access data of duster2.

obj_name1.member_na
me
obj_name2.member_na
me void main()
{

Duster duster1, duster2;
duster1.getdata();
duster2.getdata();
duster1.showdata();
duster2.showdata();

}

cls_name obj_name1, obj_name2;

void main()
{

Duster duster1, duster2; ---
-- -----

}

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 13

Program:u1p9.cpp
//program to demonstrate oops based duster information
#include<iostream.h>
class Duster
{

int id;
int length;
int breadth;
char color[10];
float price;

public:
void getdata()
{

cout<<"\nInput id,length,breadth of duster:”;
cin>>id>>length>>breadth;
cout<<”Input color and price of duster:";
cin>>color>>price;

}
void showdata()
{

cout<<"\nDuster record is:";
cout<<"\nId="<<id;
cout<<"\nlength="<<length;
cout<<"\nbreadth="<<breadth;
cout<<"\ncolor="<<color;
cout<<"\nprice="<<price;

}
};
void main()
{

Duster duster1, duster2;
duster1.getdata();
duster2.getdata();
duster1.showdata();
duster2.showdata();

}
Output:
Input id,length,breadth of duster:101
Input color and price of duster:Red

10 20(enter)
25(enter)

Duster record is:";
Id=101
length=10
breadth=20
color=Red
price=25;

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 14

Explicit and Implicit member function declaration:
There are two ways to declare member function of the class.

1. Implicitly: When member function is defined inside the class body called
implicit function declaration.

2. Explicitly: When member function is defined outside the class body using scope
resolution operator(::) called explicit member function declaration. This way
improve the clarity of the class body.

Example: Program:u1p10.cpp

//program to demonstrate oops based duster information
#include<iostream.h>
class Duster
{

int id;
int length;
int breadth;
char color[10];
float price;
public:
//define inside class body-implicit function
void getdata()
{

cout<<"\nInput id,length,breadth of duster:”;
cin>>id>>length>>breadth;
cout<<”Input color and price of duster:";
cin>>color>>price;

}
// define outside class body-explicit function
void showdata();

};
//explicit function of Duster class
void Duster::showdata()

{
cout<<"\nDuster record is:";
cout<<"\nId="<<id;
cout<<"\nlength="<<length;
cout<<"\nbreadth="<<breadth;
cout<<"\ncolor="<<color;
cout<<"\nprice="<<price;

}
//Main function
void main()
{

Duster duster1, duster2;
duster1.getdata();
duster2.getdata();
duster1.showdata();
duster2.showdata();

}
Output: same as previous

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 15

Order of section can be changed. One labels can be repeated.
Uses of label:

In C++, every data members and member functions are declared in following type of
sections.
1. private
2. public
3. protected
They are used as

In this class getdata() and showdata() both are member functions of Duster class, but
getdata() is defined inside class body wheareas showdata() is defined outside the
class body using :: operator. Before defining explicit function, it must be declared in
class body.
Access specifier /modifier of the class (Visibility mode / label)

1. members of private sections are accessible only by member functions
of same class, friend functions of that class and its friend class.

2. members of public sections are accessible only by member functions
of same class as well as all non member functions throughout in the program.

3. members of protected sections are accessible only by member
functions of same class as well as member functions of derived class.

Example:

class cls_name
{

private:
members(data+function)

protected:
members(data+function)

public:
members(data+function)

};

Program:u1p11.cpp

//program to demonstrate private,protected and public
#include<iostream.h>
class A
{

private:
int a;

protected:
int b;

public:
int c;
//member functions
void getdata(int p1,int p2)
{

a=p1;
b=p2;

}

private:

public:

protected:

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 16

Program:u1p12.cpp
#include<iostream.h>
class A
{

static int n;
public:
static void counter()
{

n++;
cout<<"\n"<< n;

}
};
int A::n;
void main()
{

A::counter();
A::counter();

}

void showdata()
{

cout<<"\na="<<"\tb="<<b;
}

};
void main()
{

A ob;
//ob.a=10;
//ob.b=20;

not accessible due to private
not accessible due to protected

ob.c=30; //Accessible due to public
ob.getdata(10,20); //Accessible due to public
ob.showdata(); //Accessible due to public
cout<<"\nc="<<c; //Accessible due to public

} Output: a=10
b=20
c=30
For one class, protected members behaves as private. In normal practice, data
members are kept in private section and member functions in public section. In the
absence of these labels, upper members will be considering private.
Static data member and static member function:
Static data member of the class is common for all objects of that class. That is static
data is created only one times for objects. Default value of static data member is 0.
Static member function of the class can access only static data member of that class
and it can be directly by class name. static keyword is used to define static data
member and static member function.

Output:
1 2

Example:

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 17

By default, all data members of the class are private and only usable by
member function of that class.
Friend Function:
A function which is not a member of the class but capable to use private data of that
class called friend function. In c++ friend function is declared using friend keyword.

In this program n is a static data member whereas counter() is a static member function
that use static data n to count number of function calling. Class A can call directly static
function counter() using :: operator.
Friend Function & Friend class:

Let A and B are two classes and if class B is capable to use all private data of class A
then class B will be called friend class of A. Friend class is declared using friend class.
Example:

In this program fun() is not a member function of class A but it is using private data in
the form of ob.a & ob.b. Normally it is invalid to use but no error because fun() is
publicly declared using friend keyword inside the class A.
Friend class:

Example:

Program:u1p14.cpp

#include<iostream.h>
class B;

Program:u1p13.cpp

#include<iostream.h>
class A
{

int a, b;
public:
int larger()
{

return (a>b ? a:b);
}
friend void fun();

};
void fun(int p1,int p2)//friend function of class A
{

A ob;
ob.a=p1;
ob.b=p2;
int n = ob.larger();
cout<<"\n Large number is "<< n;

}
void main()
{

larger(10,20);
}

Output:
Large Number is 20

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 18

class A
{

int a, b;;
public:
int larger()
{

return (a>b ? a:b);
}
friend class B;

};
Class B
{

public:
void fun(int p1, int p2)
{

A ob; ob.a=p1; ob.b=p2; int n =
ob.larger(); cout<<"\n Large number
is "<< n;

//class B uses private data of A

}
};
void main()
{

B obj;
obj.fun(10,20);

}
Output:
Large Number is 20

In this program class B is the friend class of class A, therefore any function of class B
can uses private data of class A.
Passing object to function, returning object by function and copying
one object to another object:
Passing object:
We can pass object to the function in the same way as we pass integer data but
arguments of that function must be define with class type of passing objects.
Returning object:
Any function can also return one object in the same way as we return one integer data
but function type must be defined with class type of returning object.
Copying object:
All data of one object can be copied into another object using single assignment
operator (=) in the same way as we copy integer value to integer variable, but class type
of both object must be similar.

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 19

Example: Program:u1p15.cpp

#include<iostream.h>
class complex
{

int a, b;
public:
void getdata(int p1, int p2)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\n"<<a<<"+"<<b<<"i";
}
friend complex sum(complex, complex);

};

complex sum(complex c1, complex c2)
{

complex c3;
c3.a=c1.a+c2.a;
c3.b=c1.b+c2.b;
return c3;

}

void main()
{

complex oc1,oc2,oc3;
oc1.getdata(2,3);
oc2.getdata(4,5);
oc3=sum(oc1,oc2);
oc3.showdata();

//to input 2+3i
//to input 4+5i

// we get 6+8i
}
Output:

6+8i
In this example complex is a class to define any complex in the form of (a+bi). Here
sum() is a friend function of complex class in which we pass two objects oc1 and oc2.
After addition this function returns an object c3 of complex type. Using = we can
assign returning object to oc3 object.

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Unit-2

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 20

Arrays of objects:
In C++ it is possible to create array of objects of same class type. If we want to work
on a number of objects of same class then arrays of objects are better option in place
of declaring objects separately in the same way as we create array of any other type.

In this example, ob[5] is arrays of 5 objects of same class A type. Each object can
access their members using ob[i].getdata() or ob[i].showdata(). Here I denote index
of array that vary from 0 to 4.

Example: Program:u2p1.cpp

#include<iostream.h>
class A
{

int a,b;
public:
void getdata()
{

cout<<"\n Input any two integer values:";
cin>>a;
cin>>b;

}
void showdata()
{

cout<<"\na="<<a;
cout<<"\tb="<<b;

}
};
void main()
{

A ob[5]; //arrays of 5 objects
for(int i=0;i<5;i++)

Ob[i].showdata();
cout<<"\nData of all objects are:";
for(i=0;i<5;i++)

Ob[i].showdata();
}
Output:
Input any two integer values:10
Input any two integer values:30
Input any two integer values:50
Input any two integer values:70
Input any two integer values:90
Data of all objects are:
a=10 b=20
a=30 b=40
a=50 b=60
a=70 b=80
a=90 b=100

20(enter)
40(enter)
60(enter)
80(enter)
100(enter)

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 21

Pointer to object:
Address of object can be hold into pointer of same type of class. In this case, pointer
to object can also access members of object using (arrow) reference operator.

Type checking C++ pointers:
In C++, we must be same type of pointer while assigning one pointer into another
pointer. C++ compiler checks same type of pointer.
For example:

Example:

int *pi;
float *pf;

in C++, the following assignment is illegal:
pi = pf; // error -- type mismatch

C++'s stronger type checking where pointers are involved differs from C, in which
you may assign any value to any pointer.

In this example, p is pointer to object ob. Therefore pointer p can also access
members of object ob.

 Program:u2p2.cpp
#include<iostream.h>
class A
{

int a,b;
public:
void getdata()
{

cout<<"\n Input any two integer values:";
cin>>a; cin>>b;

}
void showdata()
{

cout<<"\na="<<a;
cout<<"\tb="<<b;

}
};
void main()
{

A *p; A
ob;
p=&ob;

//pointer to object
//object
//hold address

p getdata();
p showdata();
ob.showdata();

}
Output: Input any two integer
values: 10 a=10 b=20 (by pointer to
object) a=10 b=20 (by object)

20(enter)

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 22

this pointer:
When an object is called member function then pointer to this object also passed
automatic internally, called this pointer. Inside member function this keyword
represent pointer of calling object and *this represent calling object.

Pointer to class member (.* and
Offsets of public members can be assigned to pointer variable of class member, then
they can be accessed by object using (.*) operator or pointer to object(*).

*)
getdata() member function return

Example:

and it is an object ob1 inside member function.

Example:

*this

};

 Program:u2p4.cpp

#include<iostream.h>
class A
{

public:
int a;
void show()
{

cout<<"\nwww.LRsir.net:"<<a;
}

Program:u2p3.cpp
#include<iostream.h>
class A
{

int a,b;
public:
A getdata()
{

cout<<"\n Input any two integer values:";
cin>>a; cin>>b; return *this ;

}
void showdata()
{

cout<<"\na="<<a;
cout<<"\tb="<<b;

}
};
void main()
{

A ob1,ob2;
ob2=ob1.getdata(10,20);
ob1.showdata();
ob2.showdata();

}
Output: a=10 b=20 (values
of ob1) a=10 b=20 (values of
ob2)

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 23

}
Output:
10
Here r is standalone reference of a or alias of a, therefore r point to a.

Program:u2p5.cpp

#include<iostream.h>
void main()
{

int a;
int &r=a;
r=10;
cout<<"\n"<<a;

void main()
{

int A::*data; //pointer to data member
void (A::*fun)()//pointer to member function
data=&A::a;
fun=&A::show;

//assign offset of a
//assign offset of show()

A ob; A
*p;
p=&ob;

//object
//pointer to object
//assign address of ob to p

ob.*data=10;
ob.*fun();
p *data=20;

// ob.a=10;
//ob.show();
//ob.a=20;

p *fun(); //ob.show();
}

1. Independent reference
2. References as parameters
3. Returning reference
4. Passing reference to object

Independent reference): When a variable is assign at the time of reference
declaration then reference becomes alias of variable.
Example:

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 24

Reference as return value:

Passing reference to object
We can also pass reference of any object to the function. If function change using
reference then it is made on actual object, because no copy is made of passing object.

References as function parameters:
When parameters of functions are references then they become alias of passing
values. If function modifies references then this change takes on actual values.

Reference
Example: Replace R by small r.

"char &replace(int i)" return reference of given indexing character that replace by r.

In this example, x and y are reference parameters that can hold reference of a and b
respectively.

Example:

Example: swapping two number

Program:u2p8.cpp

Program:u2p7.cpp

#include<iostream.h>
char s[15]="www.LRsir.net"
char& replace(int i)
{

return s[i];
}
void main()
{

replace(5)='r';
cout<<s;

}
Output:
www.Lrsir.net

Program:u2p6.cpp

#include<iostream.h>
void swap(int &x, int &y)
{

int t;
t=x;
x=y;
y=t;

}
void main()
{

int a=10,b=20;
swap(a,b);
cout<<"\na="<<a<<"\tb="<<b;

}
Output:
a=20 b=10

 can also return from any function.

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 25

#include<iostream.h>
class A
{

int a, b;
public:

void getdata(int p1, int p2)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\na="<<a;
cout<<"\tb="<<b;

}
friend void sign(A &);

};
void sign(A &or)
{

or.a=(-or.a);
or.b=(-or.b);

}
void main()
{

A ob;
ob.getdata(10,-20);
sign(ob);
ob.showdata();

}
Output:
a=-10 b=20

-
-
-
-
-
-

A reference variable must be initialized when it is declared.
Null references are prohibited.
We cannot reference another reference.
We cannot obtain the address of a reference.
We cannot create arrays of references.
We cannot create a pointer to a reference.
Dynamic allocation operator: (new and delete)
At run time we can allocate required amount of memory space using new operator
(malloc in c) and released using delete operator (free in c). At run time
we can allocate and releases memory space for:

It is clear that reference (or) is alias of passing object. Therefore sign changes on data
members of passing object ob.
Restrictions to References

1.One data allocation with initial value
2.Allocating array
3.Allocating object

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 26

new operator gives a base address of allocated memory space otherwise
NULL, that assign to the pointer variable.
delete operator released memory space of passing pointer.
Initializing Allocated Memory
Assign a value at the time of memory allocation.
Syntax:

Allocating Arrays
We can create dynamic array by allocating arrays using
syntax:

delete:

new operator.

Example:

Here, size is maximum limit of array.
To free an array, use this form of

Here p is pointer to integer that holds new allocated address of integer and initialize
by 10. After end need it is removed using delete.

p = new array_type [size];

ptr = new type (value);

Example: Program:u2p9.cpp

#include<iostream.h>
void main()
{
int *p;
p = new int(10); // initialize to 10
cout<<"\nAddress="<<p;
cout<<"\tvalue="<<*p;
delete p;
}

Output:
Address=65677 value=10

delete [] p;

Program:u2p10.cpp

#include<iostream.h>
void main()
{

int *p, n i;
cout<<"\nInput array size:";
cin>>size;
p=new int[n]; // allocate
cout<<"Input data:";
for(i=0; i<n; i++)

integer array

cin>>p[i];
cout<<"\nArray data:"
for(i=0; i<n; i++)

cout<<"\t"<<p[i];

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 27

p = new class_type;

delete [] p; // release the array
}

Output: Input array
size:3 Input data: 10
20 Array data: 10 20 30(Enter)

30

delete p;

Example: Program:u2p11.cpp

#include<iostream.h>
class A
{

public:
A()
{

cout<<"\nObject created";
}
~A()
{

cout<<"\nObject removed";
}
void show()
{

cout<<"\nwww.LRsir.net";
}

};
void main()
{

A *p;
p=new A;
p show();
delete p;

}
Output:
Object created
www.LRsir.net
object removed

here

To free object

We can also create object at run time using
syntax:

(arrow) operator is used to access members by pointer to object.

Here “p=new int[n];” allocate array at run time and after used “delete [] p;” released
array space.
Allocating object

:

new operator.

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 28

Constructor and destructor:
Meaning of constructor: At runtime constructor creates objects of the class. When
object is creating, all data members of its class are also creates in the memory. We
can execute codes of specified function automatically during object creation, such
function called constructor function.
Features of constructor function in C++:

Type of constructor function:
On the basis of parameters defined in constructor function, it can be classified into
following categories.

1.
2.
3.
4.
5.

General Syntax of constructor:

The name of constructor function is similar to the class name.
It does not specify any function type. (even not void)
It always defines in public section.
It can be default or parameterized.
More than one constructor functions can be defined in one class i.e. can be
overloads.

1. Default constructor
2. Parameterize constructor
3. Overloaded constructor (multiple constructors in a class)
4. Copy constructor
5. Constructor with default argument

1. Default constructor: A constructor function that does not specified any parameters
and used to initialize default values of object’s data member.
Example: Program:u2p12.cpp

#include<iostream.h>
class A
{

int a,b;
public:
// default constructor

class cls_name
{

Data member section
public:

//default constructor
cls_name()
{

…
}
// parameterized constructor
cls_name(type par1, type par2,….)
{

…
}

};

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 29

Program:u2p13.cpp

#include<iostream.h>
class A
{

int a,b;
public:
// parameterized constructor
A(int p1,int p2)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\n"<<a<<"\t"<<b;
}

};
void main()
{

A ob1(10,20),ob2(11,22);
Ob1.showdata();
Ob2.showdata();

}
Output:

A()
{

a=10;
b=20;

}
void showdata()
{

cout<<"\n"<<a<<"\t"<<b;
}

};
void main()
{

A ob1,ob2;
Ob1.showdata();
Ob2.showdata();

}
Output:
10
10

20
20

In this program A() is a default constructor that invoked automatically when object of
class A is declared without passing values. For each object of A, its default
constructor will set 10 & 20 to the data members a & b respectively. 2. Parameterized
constructor: A constructor that specified one or more parameters
and used to initialize object’s data member by passing values along with object
declaration.

Example:

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 30

10
11

20
22

Program:u2p14.cpp

#include<iostream.h>
class A
{

int a,b;
public:
// default constructor
A()
{

a=10;
b=20;

}
// constructor with one parameter
A(int p1)
{

a=p1;
b=22;

}
// constructor with two parameters
A(int p1,int p2)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\n"<<a<<"\t"<<b;
}

};
void main()
{

A ob1, ob2(11),ob2(5,7);
Ob1.showdata();
Ob2.showdata();
ob3.showdata();

}
Output:
10
11
5

20
22
7

In this program A(int p1, int p2) is a parameterized constructor that invoked
automatically when object of class A is declared with two integer values. These two
values will be store to the data members of object. 3. Overloaded constructor: When
more than one constructor is defined in a class,
then such constructors are called overloaded constructor. Every constructor must be
distinct on the basis of parameters.

Example:

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 31

In this program, A(A &oc) is a copy constructor that can copy object ob1 into ob2. 5.
Constructor with default argument: A constructor that defines parameter with
default values called constructor with default arguments. is capable to copy old object
into new object at the time of object creation.

Example:

In this program, three constructors are defined with different number of parameters.
Object ob1 invoked A(), ob2(11) invoked A(int) and ob3(5,7) invoked A(int, int).
4. Copy constructor: A constructor that is capable to copy old object into new object
at the time of object creation.
Example:

 Program:u2p16.cpp

#include<iostream.h>
class A
{

int a,b;

Program:u2p15.cpp

#include<iostream.h>
class A
{

int a,b;
public:
// copy constructor
A(A &ob)
{

a=ob.a;
b=ob.b;

}

// constructor with two parameters
A(int p1,int p2)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\n"<<a<<"\t"<<b;
}

};
void main()
{

A ob1(10,20);
A ob2=ob1; // or A ob2(ob1);
Ob1.showdata();
Ob2.showdata();

}
Output:
10
10

20
20

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 32

};
Ex ample:

class cls_name
{

Data member section
public:

//destructor
~cls_name()
{

…
…

}

Program:u2p17.cpp

 public:
// constructor with default arguments
A(int p1=0,int p2=0)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\n"<<a<<"\t"<<b;
}

};
void main()
{

A ob1,ob2(11), ob3(5,7);
ob1.showdata();
ob2.showdata();
ob3.showdata();

}
Output:
0
11
5

0
0
7

The name of destructor function is similar to the class name with prefix ~ sign.
It does not specify any function type. (not even void)
It always defines in public section.
It has no parameters.
Destructor never overloads.

In this program, A(int p1=0, int p2=0) is constructor with default argument and it
invoked for ob1 or for ob2(11) or for ob3(5,7).

Meaning of destructor: At runtime destructor removes unused object from
memory. When object is removing, all data members are also remove. We can
execute codes of specified function automatically during object removal, such
function called destructor function.
Features of destructor function in C++:

1.
2.
3.
4.
5.

General Syntax of constructor:

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 33

#include<iostream.h>
class A
{

int a,b;
public:
// constructor
A()
{

a=10; b=20; cout<<"\nObject
created";

}
// destructor
~A()
{

cout<<"\nObject removed";
}
void showdata()
{

cout<<"\n"<<a<<"\t"<<b;
}

};
void main()
{

A ob1;
Ob1.showdata();

}
Output:
10 20
Object created
Object removed

In this program A() is a constructor that invoked when object is created whereas ~A()
is destructor that invoked when object is remove from memory.

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Unit-3

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 34

Function overloading:
 Function overloading is one example of compile time polymorphism. When
more than one function are defined with the same name but mismatch on the basis of
parameters then such functions are called overloaded function and this mechanism
called function overloading.
Features:

At least two functions have same name.
All overloaded functions must be distinct on the basis of parameters.
All overloaded functions can have same return type.
Overloaded functions are linked to its function call at compile time.
Two functions of same name and same parameters are not permitted.

1
.
2
.
3
.
4
.
5
.

Example:

};

 Program:u3p1.cpp
#include<iostream.h>
class A
{

int a;
float b;
public:
void getdata()
{

cout<<"\nInput integer then real value:";
cin>>a>>b;

}
void getdata(int p)
{

a=p;
cout<<"\nInput real value:";
cin>>b;

}
void getdata(float p)
{

cout<<"\nInput integer value:";
cin>>a;
b=p;

}
void getdata(int p1, float p2)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\nInteger value is "<<a;
cout<<"\nReal value is "<<b;

}

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 35

void main()
{

A ob1,ob2,ob3,ob4;
ob1.getdata();
ob2.getdata(10);
ob3.getdata(11.2);
ob4.getdata(5,7.5);

ob1.showdata();
ob2.showdata();
ob3.showdata();
ob4.showdata();

}
Output:
Input integer then real value:
Input real value: 44.2 (Enter)
Input integer value: 55 (Enter)

Integer value is 22
Real value is 33.4

Integer value is 10
Real value is 44.2

Integer value is 55
Real value is 11.2

Integer value is 5
Real value is 7.5

22 33.4 (Enter)

In this program getdata() is overloaded function that overload 4 times.
1. void getdata(){}. It is invoked by ob1.getdata()
2. void getdata(int p){}. It is invoked by ob1.getdata(10)
3. void getdata(float p){}. It is invoked by ob1.getdata(11.2)
4. void getdata(int p1, intp2){}. It is invoked by ob1.getdata(5,7.5)

All these functions have same name but different on the basis of parameters. In this
way defining functions are called function overloading. Using function overloading
we do not remember to name of all functions having similar task.

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 36

Operator overloading:
Operator overloading is one more example of compile time polymorphism. Operator
operates on numeric data. If operator operates on objects then we say that operator is
overloaded with objects and this mechanism called operator overloading.
For example:
Binary + operator can operate numeric data (2+3) as well as operate two objects of
same class (ob1+ob2).
All operators can be overloaded with objects except following operators.

1
.
2
.
3
.

Conditional operator (? :)
Scope resolution operator (::)
Size operator (sizeof)

4.Class member access operator (. and .*)

Operator overloading is possible only if that operator is defined using operator function
and pass objects in the form of arguments. In c++ operator function can be defined in
following two ways.

1. operator overloading using member function of class
2. operator overloading using friend function of class

± may be any operator like + - / * ++ --.
If operator function is defined as a member function then first object call

operator function and second object pass as argument.
Ex: ob3=ob1+ob2 will call operator+ in the form of ob3=ob1.operator+(ob2).

Unary operator overloading:
1. Overloading unary minus operator:

–obj (convert sign of all values of data members)
Example:

Using keyword we can define a member function in the class that perform
operator overloading. Such function defined using following syntax:

Defining operator overloading:

Operator overloading using member function of class:
Operator

Program:u3p2.cpp
#include<iostream.h>
class A
{

int a, b;
public:

class cls_name
{

Data members
public:
ret_type operator±(type arg1,type arg2,…)
{

Apply ± operator on each data members
}

};

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 37

 Program:u3p3.cpp

#include<iostream.h>
class A
{

int a, b;
public:
void getdata(int p1, intp2)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\na="<<a;
cout<<"\tb="<<b;

}

 void getdata(int p1, intp2)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\na="<<a;
cout<<"\tb="<<b;

}
//unary – operator overloading function
void operator-()
{

a=-a;
b=-b;

}
};
void main()
{

A ob;
ob.getdata(10,-20);
ob.showdata();
-ob; // unary – operator overloading
ob.showdata();

}
Output:
a=10
a=-10

b=-20
b=20

In this example unary minus(-) operator is apply on object (-ob). At compile time it is
converted into ob.operator-() statement, because operator-() is a member function and
this function reverse the sign of every data members of object ob.
2. Overloading increment (++) operator:

Obj++ (Increment values of each data members by one)
Example:

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 38

};

// ++ operator overloading function
void operator++()
{

a++;
b++;

}
};

void main()
{

A ob;
ob.getdata(10,20);
ob.showdata();
ob++; // ++ operator overloading
ob.showdata();

}
Output:
a=10
a=11

b=20
b=21

 Program:u3p4.cpp

#include<iostream.h>
class A
{

int a, b;
public:
void getdata(int p1, intp2)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\na="<<a;
cout<<"\tb="<<b;

}
// -- operator overloading function
void operator--()
{

a--;
b--;

}

In this example ++ operator is apply on object (ob++). At compile time it is converted
into ob.operator++() statement, because operator++() is a member function and this
function increment values of every data members by one of object ob.
3. Overloading decrement (--) operator:

Obj-- (Decrement values of each data members by one)
Example:

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 39

void main()
{

A ob;
ob.getdata(10,20);
ob.showdata();
ob--; // -- operator overloading
ob.showdata();

}
Output:
a=10
a=9

b=20
b=19

 Program:u3p5.cpp
#include<iostream.h>
class A
{

int a, b;
public:
void getdata(int p1, intp2)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\na="<<a;
cout<<"\tb="<<b;

}
//Binary + operator overloading function
A operator+(A ob)
{

A ot;
Ot.a=a+ob.a;
Ot.b=b+ob.b;
return ot;

}
};
void main()
{

A ob1,ob2,ob3;
Ob1.getdata(10,20);

In this example -- operator is apply on object (ob--). At compile time it is converted
into statement, because is a member function and this
function decrement values of every data members by one of object ob.

Binary operator overloading: (Arithmetic and shorthand operators)

Each data members of objects ob1 and ob2 are added then assign to object
ob3.

Example:

ob.operator--() operator--()

1.Overloading Binary Arithmetic operator: (+,-,*,/, %)
ob3=ob1+ob2

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 40

}
Output:
a=11 b=22

 Program:u3p6.cpp

#include<iostream.h>
class A
{

int a, b;
public:
void getdata(int p1, intp2)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\na="<<a;
cout<<"\tb="<<b;

}
//Binary += operator overloading function
A operator+=(A ob)
{

a+=ob.a;
b+=ob.b;

}
};
void main()
{

A ob1,ob2;
Ob1.getdata(10,20);
Ob2.getdata(5,7);
ob1+=ob2; // Binary += operator overloading
ob1.showdata();

}
Output:
a=15 b=27

Ob2.getdata(1,2);
ob3=ob1+ob2; // Binary + operator overloading
ob3.showdata();

In this example binary + operator is apply on object (ob1) and (ob2). At compile time it
is converted in the form of ob3= ob1.operator+(ob2) statement, because operator+() is
a member function. This function call by (ob1) and (ob2) is pass into (ob), therefore (a,
b) are data members of (ob1) and (ob.a, ob.b) are members of (ob2). In this function
we apply binary + operator on each data member(like ot.a=a+ob.b). Finally resulting
object (ot) returns to object (ob3).

2. Overloading Binary shorthand operator: (+=,-=,*=,/=, %=)
ob1+=ob2
Every data members of object ob1 are increases by data members of object
ob2.

Example:

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 41

In this example shorthand += operator is apply on object (ob1) and (ob2). At compile
time ob1+=ob2 is converted in the form of ob1.operator+=(ob2) statement, because
operator+=() is a member function. This function call by (ob1) and (ob2) is pass into
(ob), therefore (a, b) are data members of (ob1) and (ob.a, ob.b) are members of (ob2).
In this function we apply shorthand += operator on each data member(a+=ob.a).

Operator overloading using friend function of class:
Using Operator keyword we can define a friend function of the class that can also
perform operator overloading. Such function defined using following syntax:

± may be any operator like +, -, /, *, ++, --, += etc.
If operator function is defined as a friend function of the class then every object will
passes into operator function in the form of arguments.
Ex: ob3=ob1+ob2 will be convert into ob3=operator+(ob1,ob2).
Overloading Binary plus(+) operator using friend function:

ob3=ob1+ob2
Each data members of objects ob1 and ob2 are added then assign to object
ob3.

Example:

};

 Program:u3p7.cpp

#include<iostream.h>
class A
{

int a, b;
public:
void getdata(int p1, intp2)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\na="<<a;
cout<<"\tb="<<b;

}
friend A operator+(A,A);

class cls_name
{

Data members
public:
friend ret_type operator± (type, type,…);

};
ret_type operator± (type arg1,type arg2,…)

{
Apply ± on each data members

}

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 42

 Program:u3p8.cpp

#include <iostream.h>
#include<alloc.h>
class A
{

int a,b;
public:

A()
{

a=0;
b=0;

}
A(int p1,int p2)
{

a=p1;
b=p2;

}
void showf()
{

cout<<"\na="<<a<<"\tb="<<b
}

//Binary + operator overloading using friend function
A operator+(A oa,A ob)
{

A ot;
Ot.a=oa.a+ob.a;
Ot.b=oa.b+ob.b;
return ot;

}
void main()
{

A ob1,ob2,ob3;
Ob1.getdata(10,20);
Ob2.getdata(1,2);
ob3=ob1+ob2;//Binary+operator overloading
ob3.showdata();

}
Output:
a=11 b=22

In this example binary + operator is apply on object (ob1) and (ob2). At compile time it
is converted in the form of ob3= operator+(ob1,ob2) statement, because operator+() is
a friend function of class A. In this function object (ob1) and (ob2) are passed into (oa,
ob) therefore (oa.a, oa.b) are data members of (ob1) and (ob.a, ob.b) are members of
(ob2). In this function we apply binary + operator on each data member(like
ot.a=oa.a+ob.b). Finally resulting object (ot) returns to object (ob3).
Overloading new and delete:
It is possible to overload new and delete. You might choose to do this if you want to
use some special allocation method like malloc for new and free for delete.

For Example:

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 43

type CName : :operator[](int i)
{

// . . .
}

// new overloaded
void *operator new(size_t size)
{

cout << "In overloaded new.\n";
void *p;
p = malloc(size);
return p;

}
// delete overloaded
void operator delete(void *p)
{

cout << "In overloaded delete.\n";
free(p);

}
};
//----
void main()
{

A *p1, *p2; p1 = new loc (10,
20); p2 = new loc (-10, -20);
p1->showf(); p2->showf();
delete p1; delete p2;

}
Output:
In overloaded new
In overloaded new
10 20
-10 -20
In overloaded delete
In overloaded delete
when new or delete are encountered and If these have been overloaded, the
overloaded versions are used.
Overloading Some Special Operators
Array subscripting [], function calling (), and class member access -> Overloading []
In C++, the [] is considered a binary operator when you are overloading it. Therefore,
the general form of a member “operator[]()” function is as shown here:

If ob is an object then Ob[3]translates into Ob.operator[](3). That is, the value of the
expression within the subscripting operators is passed to the operator[]() function in
its explicit parameter.
For example, following program has overloaded operator[]() function returns the
value of the array as indexed by the value of its parameter.

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 44

Ex ample:

Example:

When you overload the () function call operator, then you are creating an operator
function that can be passed an arbitrary number of parameters.
For example: Statement

translates into

In this program ob[1] translate into ob.operator[1] and this function return ob[1] 's
value.
Overloading ()

}
Output:

2

Program:u3p10.cpp
#include <iostream.h>
class A
{

int a,b;
public:

// Overload () for loc.
Void operator()(int p1, int p2)
{

a = p1; b
= p2;

}
void showf()
{

Program:u3p9.cpp
#include <iostream.h>
class A
{

int a[3];
public:
A(int i, int j, int k)
{

a[0] = i;
a[1] = j;
a[2] = k;

}
//Overloading []
int operator[](int i)
{

return a[i]; //Return indexing array data
}

};
//------
void main()
{

A ob(1, 2, 3);
cout << ob[1]; // displays 2

Ob(10, 23.34, "www.LRsir.net")

Ob.operator()(10, 23.34, " www.LRsir.net ");

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

 ,

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 45

}
Output:
10 10

Program:u3p11.cpp

#include <iostream.h>
class A
{

public:
int a;
//Overloaded
A *operator ()
{

return this;
}

};
//-----
void main()
{

A ob;
Ob a = 10; // same as ob.a
cout << ob.a << " " << ob a;

}

cout<<"\na="<<a<<"\tb="<<b

};
//------
void main()
{

A ob;
ob(10, 20); //Call Overloaded ()
ob.showf();

}
Output:
a=10 b=20

Thus ob(10,20) will call overloaded () function. And this will assign values.

An

The pointer operator, also called the
unary operator when overloading. When

function must be a member of the class upon which it works.

You can overload C++'s comma operator. The comma is a binary operator. When
(comma) operator is overloaded then (ob1,ob2) translate into ob1.operator,(ob2) .

The following program illustrates overloading the
between ob.i and ob–>i when operator–>() returns the

by showing the equivalence
pointer:

Example:

operator, is considered a
then operator is overloaded

Overloading

Overloading the , Comma Operator

ob

operator ()

 class member access

() . ClassMember translate into ob.operator

–>
this

TechByWebCoder

@techbywebcoder

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 46

Here is a program that illustrates the effect of overloading the comma operator.
Example:

The functions that overload the insertion(<<) and extraction(>>) operators are
generally called inserters and extractors, respectively.
Example:

In this program ob1=(ob1,ob2) translate into ob1=ob1.operator,(ob2). This function
return object ob2 that assign ob1.
Overloading <<(Insertion operator) and >>(Extraction operator):

}
Output:
10 20 20
20

Program:u3p12.cpp

#include <iostream.h>
class A
{

public:
int a;
//Overloaded ,
A operator,(A ob)
{

A temp;
temp.a=ob.a;
cout<<”\na=”<<a;
return temp;

}
};
void main()
{

A ob1,ob2;
ob1.a = 10;
ob2.a = 20;
cout << "\n"<<ob1.a; // display 10
cout << "\n"<<ob2.a; // display 20

ob1=(ob1,ob2); //Overloading , operator

cout << "\n"<<ob1.a; // display 20 of ob2
cout << "\n"<<ob2.a; // display 20

Program:u3p13.cpp
#include<iostream.h>
class A
{

int a, b;
public:
friend istream &operator>>(istream &stream, A &o);
friend ostream &operator<<(ostream &stream, A o);

};
Author: Mr. Lokesh Rathore (MCA/MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com
Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 47

istream &operator>>(istream &stream, A &o)
{

cout<<"\nInput two integers:";
stream>>o.a>>o.b;
return stream;

}
ostream &operator<<(ostream &stream, A o)
{

stream<<"\na="<<o.a<<"\tb="<<o.b;
return stream;

}
void main()
{

A ob1,ob2;
cout<<Input data for two object";
cin>>ob1>>ob2;
cout<<"Data of two objects are:";
cout<<ob1<<ob2;

}
Output:
Input data for two object
Input two integers:10
Input two integers:5
Data of two objects are:
a=10 b=20

20(enter)
7(enter)

a=5 b=7
In this example >> and << are overload with objects.

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 48

Unit-4

In C++, inheritance can be implemented in following ways.

Here- : is used to connect derived class to the base class.
Mode/ Base class access control(Access protected member of base class): may

be
private or protected or public. Default is private. This mode change protected and
public members of base into another mode for derived class. It can be explain using
following table.

Inheritance:
The ability to access members of one class by another class called inheritance.

At least two classes are required for inheritance.
1. Base class (Old class / Super class): A class that provides members to another

class called base class.
2. Derived class (New class / sub class): A class that can access members of base

class called derived class.
Derived class can access only protected and public members of base class.

Types of inheritance:

Syntax of derived class:

class derived_class: mode base_class
{

Members of derived class
};

Not inherited

Becomes private

Becomes private

Not inherited

Remain protected

Becomes protected

Not inherited

Remain protected

Remains public

private members of base
protected members of base
public members of base

private with
derived

mode protected mode with
derived

public mode with
derived

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 49

When object of derived class is creates then all data members of base class will be
creates then data members of derived class. Member functions of derived class can
access only protected and public members of base class.
Example: Single Inheritance (One base and one derived class)

Program:u4p1.cpp

#include<iostream.h>
class base
{

int a; // only usable by base
protected:

int b; //usable by base or derived only
public:

void bgetdata(int p)
{

a=p;
}
void bshowdata()
{

cout<<"\nIn base a="<<a;
}

};
class derived: public base
{

public:
void dgetdata(int p)
{

b=p; //uses protected of base
}
void dshowdata()
{

cout<<"\nIn derived b="<<b;
}

};
void main()
{

derived od;
od.dgetdata(10);
od.dshowdata();

od.bgetdata(20);
od.bshowdata();

}
Output:
In derived b=10
In base a=20

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 50

Example:

If it is possible to access protected and public members of base class (grand) by its
drive’s(parent) derived class(child) then it is called multilevel inheritance.

In this example derived class is publically connected to base class therefore protected
and public members of base class can be directly used by member functions of
derived class, that is protected data b is uses by dgetdata() and dshowdata() of derived
class. In this class private data a of base class is not permitted.
When object of derived class is created then first all data members of base class are
created then all data members of derived class are created, but private data of base
class are only visible within member functions of base class.
Object of derived class can call all public member functions of derived class as well
as public member function of base class.(due to public mode).
Multilevel Inheritance:

Program:u4p2.cpp
#include<iostream.h>
class grand
{

protected:
int g;

};
class parent: public grand
{

protected:
int p;

};
class child: public parent
{

int c;
public:

void getdata(int p1, int p2, int p3)
{

g=p1;
p=p2;
c=p3;

}
void shodata()
{

cout<<"\n data g is of super base (grand) "<<g;
cout<<"\n data p is of intermediate base (parent) "<<p;
cout<<"\n data c is of derived (child) "<<c;

}
};
void main()
{

child od;
od.getdata(10,20,30);
od.showdata();

}

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 51

Output:
data g is of super base (grand) 10
data p is of intermediate base (parent) 20
data c is of derived (child) 30

#include<iostream.h>
class base1
{

protected:
int b1;

};
class base2
{

protected:
int b2;

};
class derived: public base1, public base2
{

int d;
public:

void getdata(int p1, int p2, int p3)
{

b1=p1;
b2=p2;
d=p3;

}
void shodata()
{

cout<<"\n data b1 is of base1 "<<b1;
cout<<"\n data b2 is of base2 "<<b2;
cout<<"\n data d is of derived "<<d;

}
};
void main()
{

derived od;
od.getdata(10,20,30);
od.showdata();

}
Output:
data g is of base1 10
data p is of base2 20
data c is of derived 30

Example:

In this example, child is a derived class that can access protected or public members
of its intermediate base class (parent) as well of super base class (grand).
Multiple Inheritances:
When one derived class has more than one base class called multiple inheritances. It
means one derived class can access protected and public members of more base
classes.

Program:u4p3.cpp

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 52

Example:

When one base class has more than one derived class, called hierarchical inheritances.
It means more than one derived class can also access protected and public members of
one base classes. (base is server and all derived classes are client)

In this example, derived class can access protected data b1 of base1 class and
protected data b2 of base2 class, therefore it is called multiple inheritance.
Hierarchical Inheritances:

Program:u4p4.cpp
#include<iostream.h>
class base
{

protected:
int b;

};
class derived1: public base
{

int d1;
public:

void getdata(int p1, int p2)
{

b=p1;
d1=p2

}
void shodata()
{

cout<<"\n data b is of base "<<b;
cout<<"\n data d1 is of derived1 "<<d1;

}

};
class derived2: public base
{

int d2;
public:

void getdata(int p1, int p2)
{

b=p1;
d2=p2

}
void shodata()
{

cout<<"\n data b is of base "<<b;
cout<<"\n data d2 is of derived2 "<<d2;

}
};

void main()
{

derived1 od1;
od1.getdata(10,20);
od1.showdata();
derived2 od2;

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 53

 od2.getdata(5,7);
od2.showdata();

}
Output:
data b is of base 10
data d1 is of derived1 20
data b is of base 5
data d2 is of derived2 7
In this example, derived1 class and derived2 class both can access protected data b of
base class, therefore it is called hierarchical inheritance.
Hybrid inheritance (virtual base class)
A structure of inheritance having more than one type of inheritance called hybrid
inheritance.

This structure has one hierarchical inheritance “Grand (Parent1 and Parent2)”, one
multiple inheritance “(Parent1, Parent2) Child ” and two multilevel inheritance
“Grand Parent1 Child”, “Grand Parent2 Child.
Problem with hybrid inheritance:

In above type of inheritance, when object of “Child” class is created then data
members of “Grand” class are crated two times. One set via “Parent1” class and
other set via “Parent2” class. This causes ambiguity errors if object of “child” class
uses data members of “Grand” class. This should be avoided.
Solution of ambiguity problem: “Virtual base class”
All multiple paths between Grand and Child class (Grand Parent1 Child,
Grand Parent2 Child) can be avoided by making a common base class(Grand) as
virtual base class while declaring intermediate base classes (parent1 and parent2). Due
to virtual base class, only one copy of Grand members are created for Child class.

Implementing virtual base class: Program:u4p5.cpp
#include<iostream.h>
class grand
{

protected:
int g;

};
class parent1: virtual public grand
{

protected:
int p1;

};
class parent2: virtual public grand
{

protected:
int p2;

};

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 54

class child: public parent1, public parent2
{

private:
int c;

void getdata(int w, int x, int y, int z)
{

g=w;
p1=x;
p2=y;
c=z;

}
void showdata()
{

cout<<"\ngrand data is "<<g;
cout<<"\nparent1 data is "<<p2;
cout<<"\nparent2 data is "<<p1;
cout<<"\nchild data is "<<c;

}
};
void main()
{

child od;
od.getdata(10,20,30,40);
od.showdata();

}
Output: grand data is 10
parent1 data is 20
parent2 data is 30
child data is 40
In this program grand class is declared virtual base class for child class via all
intermediate base classes parent1 and parent2, therefore when object od of child class
is created then data g of grand class is created only times due to virtual base class and
ambiguity problem does not arises.
Constructor and destructor used in inheritance:
Constructor:

When object of derived class is created then order of creating data members and
invoking constructor functions are following.

1. In Single inheritance: First base class then derived class.
2. In multilevel inheritance: First super base (grand) then intermediate (parent)

and finally derived.
3. In multiple inheritance: First from left base class towards right most base

class and finally derived.
Destructor:
When object of derived removed then order of removing data members and
invoking destructor functions are reversing of constructors. It means, that last created
will first remove.
Example:

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 55

Program:u4p6.cpp

Program:u4p7.cpp
#include<iostream.h>
class base
{

protected:
int a;

public:
base(int p)
{ a=p; }

//base class constructor

};
class derived: public base
{

int b;
public:

derived(int p1,int p2): base(p1)
{

b=p2;
}

#include<iostream.h>
class base
{

public:
base()
{ cout<<"\n base constructor"; }
~base()
{ cout<<"\n base destructor"; }

};
class derived: public base
{

public:
derived()
{ cout<<"\n derived constructor";}
~derived()
{ cout<<"\n derived destructor"; }

};
void main()
{

derived od;
}

Output:
base constructor
derived constructor
derived destructor
base destructor
When object of derived class create then first constructor of base class calls then of
derived. When object remove then first destructor of derived calls then of base.
Passing parameters to the base class constructor:
When base class contain parameterized constructor then we can pass parameters to
base constructor at the time of object creation of derived.

Example:

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 56

 void showdata()
{

cout<<"\nbase a="<<a;
cout<<"\nderived b="<<b;

}
};
void main()
{

derived od(10,20);
od.showdata();

}
Output:
base a=10
derived b=20

It is clear that that using derived(int p1, int p2):base(p1)

base::member

Program:u4p8.cpp
#include<iostream.h>
class base
{

public:
int b;

};
class derived: private base
{

public:
base::b; //make b public again

};
void main()
{

derived od;
od.b=10;
cout<<"\n base b="<<b;

}
Output:
base b=10
In this example, base is derived private but we have to give grant public data b of base
remains public in derived using “base::b”.

When a base class is inherited as private, all public and protected members of that
class become private members of the derived class. However, we can use one or
more inherited members to their original access specification. It is possible using
following syntax in derived class.

Example:

we can pass parameters to base constructor. Constructor header of derived receive all
parameters and we can pass them to the base class.
Granting Access

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 57

Virtual Function: (Run time polymorphism)
Run time polymorphism is possible using virtual function. In hierarchical inheritance, it
may be happened that same name function headers are defined in base class as well as
in all derived classes. This situations causes ambiguity when object of derived class
invoked such function.

Ambiguity can be avoided by dynamic binding of function. To create dynamic binding,
address of derived object is assigned to base pointer. At runtime when base pointer call
a function that defined in both classes (base as well as derived) then function of base
class is bind up.

If function is defined using virtual keyword in base class and same function is also
defined in derived class then base pointer will call function of derived.

Example:

Dynamic binding:(Pointer to derived class)

base *p;
derived od;
p=&od;
p show();

Program:u4p9.cpp
#include<iostream.h>
class base
{

public:
virtual void show()
{

cout<<"\nI m defined in base";
}

};

class derived1: public base
{

public:
void show()
{

cout<<"\nI m defined in derived1";
}

};
class derived2: public base
{

public:
void show()
{

cout<<"\nI m defined in derived2";
}

};
Author: Mr. Lokesh Rathore (MCA/MTech)

WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com
Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 58

void main()
{

base *p;
derived1 od1;
p=&od1;
p show(); //I m defined in derived1
derived2 od2;
p=&od2;
p show();//I m defined in derived2

} Output: I m defined in
derived1 I m defined in
derived2

keyword removes then output will be:
I m defined in base
I m defined in base

Program:u4p10.cpp
#include<iostream.h>
class abstract
{

public:
virtual void show()=0; //pure virtual

};
class derived1: public abstract
{

public:
void show()
{

cout<<"\nI m defined in derived1";
}

};
class derived2: public abstract
{

public:
void show()
{

cout<<"\nI m defined in derived2";
}

If

- Pure virtual function: If virtual function in base class does not defined with
code and assign by 0 called pure virtual function. Abstract base class: A base
class that contains pure virtual functions can’t be used for creating objects,
such class called abstract class. The purpose of creating abstract base class is
to provide members to the derived classes.

-

Example:

In this program, if base pointer holds address of od1 then function of derived1 class
will be invoked and if base pointer has address of od2 then function of derived2 class
will be invoke. If virtual keyword removes then function of base class will be invoked
whatever addresses hold by base pointer.
Pure virtual function: (abstract base class)

virtual

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 59

};
void main()
{

// abstract ob; error
base *p;
derived1 od1;
p=&od1;
p show(); //I m defined in derived1

derived2 od2;
p=&od2;
p show();//I m defined in derived2

}
Output:
I m defined in derived1
I m defined in derived2

In this example, “virtual void show()=0;” is called pure virtual function and “abstract”
called abstract base class because its object class can’t be created and their functions
are defined by derived classes.
Early vs. Late Binding
Early binding: (static or compile time binding) Early binding occur at compile time.
When we define any function in a program then
that function is bind up to its all function call statements during compilation. This
event occurs before running the program therefore it is called early binding. Examples :
normal function, function overloading and operator overloading functions. Late binding:
(dynamic or run time binding) Late binding occur at run time of program. When we
define any function in a program
then that function is bind up to its all function call statements during execution of
program. This event occurs after compiling the program therefore it is called late
binding.
Examples of late bindings are virtual functions. It is possible using base pointer.

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Unit-5

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 60

The C++ Input / Output system basics:
Every program takes some data as input and generates processed data as output. In
C++ I/O operations is done using predefined streams and stream class.
C++ streams:

All C++ I/O operations are performed using console and file streams. All stream
classes are declared in header file. The hierarchy of I/O stream classes in
iostream.h header file is following.

ios class is base of istream and ostream classes and these two class are base of
iostream class. ios is declared virtual base class so that iostream uses one copy of ios
members.
ios provides the basic supports for formatted and unformatted I/O operations. istream
class provides facilities for input data and ostream provides facility for output.
iostream provides facilities for handling both input and outputs.
For example cout stream used for output because it is defined using ostream class and
cin is used for input because defined using istream class.

A stream is a sequence of bytes. C++ I/O system operates through streams. A
stream acts as a logical device that either produces or consumes information. A
stream is linked to a physical device by the I/O system.

It is clear that, a C++ program extracts byte from input stream and inserts bytes into
input streams. Input stream reads data from input device (keyboard) and output
stream sends output to the output device (monitor). Thus streams are used to create
an interface between C++ program and I/O devices.
C++ predefined streams:
When a C++ program begins execution, four built-in streams are automatically
opened. By default, the standard streams are used to communicate with the console.
They are:

1.
2.

: for standard input from keyboard
: for standard output to the screen

cin
cout

The basic stream classes:

iostream.h

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 61

Unformatted I/O operations:
Overloaded operators >> and <<

cin cout object
ostream

>> operator is overloaded with object for input whereas << is overloaded with
for output operations. >> is overloaded in the istream class and << is overloaded in
class.
Reading data from keyboard:
Display data on screen:

get() and put() function:
istream
ostream

getline() and write() function:
istream

cin
cout

cin>>var1>>var2>>…..>>varN;
cout<<item1<<item2<<…..<<itemN;

get() define in
put() define in
Example:

Example:

class used to read one character from keyboard by
class used to show one character on screen by .

getline() define in class used to read whole line of words that end with
newline character (enter key) by cin whereas write() define in ostream class used to
show characters up to given limit on screen by cout.

Example:

 whereas

Program:u5p1.cpp
#include<iostream.h>
void main()
{

int a,b;
cout<<"\nInput two values:";
cin>>a>>b;
cout<<"\na="<<a<<"\tb="<<b;

}
Output:
Input two values: 10
a=10 b=20

20(Enter)

Program:u5p2.cpp
#include<iostream.h>
void main()
{

char ch;
cout<<"\nPress any key:";
cin.get(ch);
cout.put(ch);

//read character
//show on screen

}
Output:
Press any key: a(enter)
a

 Program:u5p3.cpp
#include<iostream.h>
void main()
{

char line[30];
cout<<"\nInput a line of text:";
cin.getline(line,30);
cout.write(line,30);

//read line
//show 30 character

}

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 62

Program:u5p5.cpp

#include<iostream.h>
void main()
{

cout.precision(3);
cout<<2.12178<<"\n";
cout<<3.5004<<"\n";

}
output:
2.122 (rounded)
3.5 (not show 00)
here precision shows only 3 digits afer decimal point.

Program:u5p4.cpp

#include<iostream.h>
void main()
{

cout.width(20);//set 10 columns
cout<<"www.LRsir.net";
cout.width(15);
cout<<"open it";

}
output:

w w w . L R s i r . n e t

The value www.LRsir.net is printed right justified in first 20 columns, Next item print
in 15 columns.
2) cout.precision(d):

Output:
Input a line of text: www.LRsir.net(enter)
www.LRsir.net

This member function of ios set the number of digits(d) after decimal point of
floating number.It is in effect until reset.(default precision digits are 6)
Example:

C++ supports a number of member functions for formatting outputs. These functions
are classified into following categories.
1. Defined in ios class.
2. using manipulators
3. creating our own manipulators.

ios Formatted functions: ios class contain a number of member
functions used
to format output. These functions can be invoked using cout stream because ostream
is derived class of ios class.
1) cout.width(w): This member function of ios set the number of columns(w) for the output of
only one item.
Example:

Formatted console I/O operations

 o p e n i t

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 63

statement.
 this member is used to clear flag that set on previous

Blank spaces are filled by *.

4) cout.setf(): This is a member function of ios class that can be used for multiple
formatted output. In this function we pass one or two flags as arguments.

- cout.set(flag): pass only one argument
flag use

Print + before positive number(+22)
Show . and zero(2.00)

ios::showpos
ios::showpoint

- cout.set(flag,group): It is overloaded form where we pass two arguments.
flag Group / bit flag use

For left justification
For right justification
Represent floating number like 5E-3

ios::left
ios::right
ios::scientific

ios::adjustfield
ios::adjustfield
ios::floatfield

Example:

3) cout.fill('*'):
This member function of ios fills unused spaces by any character like *.It is in

effect until reset.
Example:

5) cout.unsetf(flag): ios

Program:u5p6.cpp
#include<iostream.h>
void main()
{

cout.fills('*');
cout.width(20);//set 10 columns
cout<<"www.LRsir.net";
cout.width(15);
cout<<"open it";

}
output:

Program:u5p7.cpp
#include<iostream.h>
void main()
{

cout.width(20);//set 10 columns
cout.fills('*');
cout.precision(2);
cout.setf(ios::showpos);
cout.setf(ios::showpoint);
cout.setf(ios::left, ios::adjustfield);
cout<<23;

}
output:

+ 23 . 0 0 * * * * * * * * * * * * * * *

* * * * * * * w w w . L R s i r . n e t * * * * * * * * o p e n i t

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 64

Manipulators:
A set of functions defined in iomanip.h called manipulators used to formatted output.
These functions can be used as in following form.

Creating Your Own Manipulator Functions
If one type of formatted sequence is required many times then every time we have to
rewrite same sequence before showing items. This is very time expensive. We can also
create our own manipulators using sequence of all required formats. It will be used in
cout statement, similar to predefined manipulators.
Syntax:

It is clear that manipulators can be used in

No argument is used when the manipulator is inserted in
Example1: Set newline +10 columns + Fill blank by *

There are following some important manipulators-
1) setw(w): used to set number of columns(w) of formatted output.
2) setprecision(d): used to set number of digits(d) after decimal point.
3) Setfill('*'): used to fill blank space by a character like *.
4) endl:used to set curser at new line.

Example:

 statement.

 statement to formatted output. cout

cout

}

}

Program:u5p8.cpp

#include<iostream.h>
#include<iomanip.h>
void main()
{

}
Output:
12.14 (rounded)
*******www.LRsir.net

Program:u5p9.cpp
#include <iostream.h>
#include <iomanip.h>
ostream &userm(ostream &stream)
{

stream<<"\n";
stream.width(20);
stream.fill('*');
return stream;

cout<<manip1<<manip2<<manip3<<ite
m;
cout<<manip1<<item1<<manip2<<item
2;

ostream &manip-name(ostream &stream)
{

// your code here
return stream ;

cout<<setprecision(2)<<12.136;
cout<<endl<<setw(20)<<setfill('*')<<"www.LRsir.net";

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 65

void main()
{

cout << userm << www.LRsir.net;
cout << userm << "my website";

}
Output:
* * * * * * * w w w . L R s i r . n e t
* * * * * * * * * * m y * w e b s i t e
In this example, is user created manipulator that define three formats. userm

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Miscellaneous

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 66

Templates
Using template, we can create only one class for any type of data members and define
functions for any type of parameters. A template can be considered as a macro. We use
template in place of all those data type that have to replace by other data types. For
example, following program has a class A that defines integer data members, but we
want work on float data members then we would be replace every integer type by float
type.
For example:

Problem in this program: In this program class has int data members and member
function getdata() defines int
parameters, sum() retrun int data. We have to redefine this class for any other type
like float. Solution: class templates and function templates.

Program :temp1.cpp

#include<iostream.h>
class A
{

int a;
int b;
public:

void getdata(int p1, int p2)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\na="<<a;
cout<<"\tb="<<b;

}
int sum()
{

return a+b;
}

};
void main()

{
int x=10, y=20,s;
A ob;
ob.getdata(x,y);
ob.showdata();
s=ob.sum();
cout<<"\nSum="<<s;

}
Output:
a=10 b=20
Sum=30

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 67

-

Example of class template for one type:

Class template: A class created from a class template is called template class.
Class template for one parameter type: template keyword is used as a prefix before
the class and T defines replacing data type in class.

- Syntax for defining template class:
template <class T>
class clsname
{

Use T in place of data type
};

Syntax of defining object of template class is
classname<datatype> objectname;

A<int> ob1; or
A<float> ob2;

Program:temp2.cpp

#include<iostream.h>
template <class T>
class A
{

T a;
T b;
public:

void getdata(T p1, T p2)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\na="<<a;
cout<<"\tb="<<b;

}
T sum()
{

return a+b;
}

};
void main()
{

A<int> ob1;
A<float> ob2;
cout<<"\nworking with integer data:";
ob1.getdata(10,20);
ob1.showdata();
int s1=ob1.sum();
cout<<"\nSum="<<s1;
cout<<"\nworking with float data:";
Ob2.getdata(5.2,6.3);

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 68

 Ob2.showdata(); float
s2=ob2.sum();
cout<<"\nSum="<<s2;

}
Output:
working with integer data:
a=10 b=20
Sum=30
working with float data:
a=5.2
Sum=11.5
Now in this class A can be used for any data type where we have to define template T.
Class template for multiple parameter types:
T1, T2 etc can be used for multiple types.

b=6.3

template <class T1,class T2,..>
class clsname
{

Use T1,T2,..in place of data types
};

- Syntax of defining object of template class is
classname<type1,type2> objectname;
First int and second float: A<int, float> ob1;

Example of class template for two type:
Program:temp3.cpp

#include<iostream.h>
template <class T1, class T2>
class A
{

T1 a;
T2 b;
public:

void getdata(T1 p1, T2 p2)
{

a=p1;
b=p2;

}
void showdata()
{

cout<<"\na="<<a;
cout<<"\tb="<<b;

}
T2 sum()
{

return a+b;
}

};

- Syntax for defining template class for multiple types:

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 69

void main()
{

A<int,float> ob1; cout<<"\nworking with
multiple types:"; ob1.getdata(10,20.2);
ob1.showdata(); float s=ob1.sum();
cout<<"\nSum="<<s;

}
Output:
working with multiple types:
a=10 b=20.2
Sum=30.2
class A can be used for any two data types using template T1 and T2.

Function template: Like class template, we can also define function templates
that could be used to create a family of functions with different argument types.

template <class T>
ftype fname(arguments of T type)
{

Body of function used arguments of T type
};

Example of swapping of any two numbers of any types.
Program:temp4.cpp

#include<iostream.h>
template <class T>
void swap(T &x,T &y)
{

T temp=x;
x=y;
y=temp;

}
void main()
{

int a=10,b=20;
float p=2.2,q=3.4;
swap(a,b);//pass integers
swap(p,q);//pass floats
cout<<"\nInteger:a="<<a<<"\tb="<<b;
cout<<"\nFloat:p="<<p<<"\tq="<<q;

}
Output:
Integer:a=20
Float:p=3.4

b=10
b=2.2

- Syntax for defining function template:

In this way using function template we can pass different types of parameters to one
function.

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 70

File handling I/O operation in C++:
File is a collection of characters saved in secondary memory (hard disk) with some
properties (attributes).
File attributes:

ios::in

ios::out

ios::app

ios::ate

ios::binary

ios::trunc

istream/fstream

ostream/fstrea

m

ostream/fstrea

m all all ostream

1.File name (Ex: myfile)
2. File extension (Ex:.txt)
3.Date and time of file creation & Modification(Ex: 1/24/16 7:22 pm)
4. Size of file(Ex: 2KB)
5.File access permission (Ex: Read / Write / Execute) etc.

-
-
-

 for reading data from file,
 for writing data to the file

 for read or write operation to the file
All these file stream classes are declared in fstream.h header file.
Opening and closing file: Before opening a file, we must first obtain streams.

1) ifstream fr; //to read file data
2) ofstream fw; //to write data in file
3) fstream frw; //for read and write data of file

fr, fw and frw are file stream used to open and read / write operation on file.
Syntax: stream.open("filename",mode);

Mode set file pointer position and type of file.

1
.
2
.

Create and Open new file(loading)
Open existing file

3.Writing data to the file
4.Reading data from file
5
.
6
.

Searching data on file
Closing file

File types: (Binary file and Text file)
For the same content size of these two type of files are different because various
character translation occurs in text mode file.
File stream classes and header file:

read and beginning

write and beginning

append and end

append and end but can move beg

open in binary mode (default is text)

remove content of exist file

Mode

File Operations:

ifstream
ofstream
fstream

applicable_stream_class use_and_ pointer_position

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 71

closing the file:

Syntax:
Example1: Open file only in read mode

Example2: Open file only in write mode

Example3: Open file only in append mode

Example4: Open file in binary and write mode

After read / write operation on file, file should be unload from
memory using close() function of file stream class.

stream.close();

ifstream fr;
fr.open("file1.txt");
//or
fr.open("file1.txt", ios::in);
if(!fr)
{

cout<<"\n unable to open file";
//handle error

}
---read operation-------
fr.close();

ofstream fw;
fw.open("file1.txt");
//or
fw.open("file1.txt", ios::out);
if(!fw)
{

cout<<"\n unable to open file";
//handle error

}
---write operation-------
fw.close();

ofstream fa;
fa.open("file1.txt",ios::app);
if(!fa)
{

cout<<"\n unable to open file";
//handle error

}
---append operation-------
fa.close();

ofstream fw;
fw.open("file1.txt",ios::binary|ios::out);
if(!fw)
{

cout<<"\n unable to open file";
//handle error

}
---binary write operation-------
fw.close();

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 72

Using << and >>

Using put() and get()

file1.txt
www.LRsir.net

Reading text from the file>>:

Writing text to the file using <<:

Writing character to the file in binary mode using put():
Program:file3.cpp
#include<iostream.h>
#include<fstream.h>
void main()
{

Program:file2.cpp

#include<iostream.h>
#include<fstream.h>
void main()
{

ifstream fr;
fr.open("file1.txt");
if(!fr)
{

cout<<"\n unable to open file";
return;

}
char txt[50];
fr>>txt; //read text from file
cout<<txt;
fw.close();

}
Output: www.LRsir.net (Read from file1.txt)

ofstream fw;
fw.open("file1.txt",ios::out|ios::binary);

Program:file1.cpp

#include<iostream.h>
#include<fstream.h>
void main()
{

ofstream fw;
fw.open("file1.txt");
if(!fw)
{

cout<<"\n unable to open file";
return;

}
fw<<"www.LRsir.net\n"; //write text to the file
fw.close();

When this program executes then

}
creates in current location and content

will be write into file using << insertion operator.

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 73

Program:file5.cpp
#include<iostream.h>
#include<fstream.h>
#include<string.h>

struct employee
{

int id;
char name[20];
float sal;

};

if(!fw)
{

cout<<"\n unable to open file";
return;

}
char ch;
cout<<"Type text: (Press ! to stop)";
while(1)
{

cin.get(ch);
if(ch=='!')break;
fw.put(ch);

}
fw.close();

Program:file4.cpp
#include<iostream.h>
#include<fstream.h>
void main()
{

ifstream fr;
fr.open("file1.txt",ios::in|ios::binary);
if(!fr)
{

cout<<"\n unable to open file";
return;

}
char ch;
while(fr) //false when eof
{

fr.get(ch);
cout.put(ch);

}
fr.close();

 }
Contents are write to the file1 until ! mark.
Using write() and read()

}
Contents are write to the file1 until ! mark.
Reading character from file in binary mode using get():

Writing different type of data to the file in binary mode using write():

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 74

Program:file7.cpp
#include<iostream.h>
#include<fstream.h>
void main()
{

Program:file6.cpp
#include<iostream.h>
#include<fstream.h>
#include<string.h>
struct employee
{

int id;
char name[20];
float sal;

};
void main()
{

employee emp;
ifstream fr;
fr.open("file1.txt",ios::in|ios::binary);
if(!fr)
{

cout<<"\n unable to open file";
return;

}
fr.read((char*) &emp,sizeof(emp));
cout<<emp.id<<"\n";
cout<<emp.name<<"\n";
cout<<emp.sal<<"\n";

fw.close();

void main()
{

employee emp;
emp.id=101;
strcpy(emp.name,"Lokesh rathore";
emp.sal=30000.34;
ofstream fw;
fw.open("file1.txt",ios::out|ios::binary);
if(!fw)
{

cout<<"\n unable to open file";
return;

}
fw.write((char*) &emp,sizeof(emp));
fw.close();

}

}
Reading different type of data from file in binary mode using read():

Reading a line upto \n character from file in binary mode using getline():

Using getline()

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 75

fw.flush();

char ch=fr.putback();

if(fr.eof())
cout<<"File ends";

fr.seekg(offset,origin);
origin may be
ios::beg
ios::cur
ios::end

beginning of file
current location
end of file
set write stream at given offset addess for next write

ifstream fr;
fr.open("file1.txt");
if(!fr)
{

cout<<"\n unable to open file";
return;

}
char str[255];
str=fr.getline();
cout<<str;
fr.close();

fstream frw;
frw.open("file1.txt",ios::in|ios::out|ios::binary)
frw.seekp(offset,origin); //fstream

return current file position.

ch has previous character.

 }
Contents of one line are read from the file1.

eof() function(detecting end of file): EOF is termination character of every
file. When pointer reaches to EOF then eof() function gives true value.

ignore() function: ignore reading up to given number of character or given
character. Following code ignores character until space is encounter or 10 characters
have been read.

fr.ignore(10,' ');
peek() function: gives next character of read stream.
char ch=fr.peek();
ch has next character(may be EOF)
putback() function: gives last read character from a read stream.

tellg() and tellp():

seekp() function:
operation.

flush() function:

seekg() function:

operation.

force write stream data to the file before closing file.

set read stream at given offset addess for next read

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

C++ Notes

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 76

Exception handling:

All the statements that create exception should be defined in try block. If exception
occurred then it is thrown to the catch block with exception value. In this block we
trace type of exception and show message to user. After then remaining statements
continued for execution.
Example:

 At run time program can gives error due to some statement like m/n and n may
be 0, opening file then program can be terminated from that point and remaining
statements does not executed. It is called exception.

We can handle such exception in C++ program using try-catch block.
Syntax:

Remark: Not supported in TurboC++ Compiler.

try
{

//code creates exception
}
catch(type arg1)
{

//error message with value
}

Program:excep1.cpp
#include<iostream.h>
void main()
{

int c, a, b;
cout<<"input two number:";
cin>>a>>b;
try
{

c=a/b;
cout<<c;

}
catch(int i)
{

cout<<"\nException occurs";
cout<<"\n Exception value is "<<i;

}
}
Output1:
input two number: 10
Exception occurs
Exception value is 1
Output2:
input two number: 10
5

0(enter)

2(enter)

Author: Mr. Lokesh Rathore (MCA/MTech)
WhatsApp&Call: 9425034034, website: www.LRsir.net, Email: LRsir@yahoo.com

Page | 3

TechByWebCoder

@techbywebcoder

